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Abstract

Pthreads is a POSIX standard established to control the spawning, execution and termination of multiple threads within
a single process. Because of a much lower overhead, use of Pthreads is an attractive approach.  Under this
programming paradigm on a shared-memory system, threads execute within a single address space, although multiple
processors may be employed to execute the various threads.  The disadvantage of Pthreads with respect to high
performance computing is that there is no Fortran interface defined as part of the POSIX standard. We present our
current progress in defining and implementing a full set of Fortran 90 bindings for the POSIX threads functions.  Also
presented are many of the design decisions made and lessons learned while striving to keep the bindings as portable as
possible.  A particle dynamics code is being used as a test platform to evaluate the feasibility, efficiency and scalability
of such a parallel execution model. Preliminary results for the particle dynamics test code indicate that the per-
processor performance may be slightly less than with compiler directives, but that the scalability is superior.  In
addition, our investigation of combining Pthreads with MPI is described. This could be a useful programming model
for SMP clusters.

1. Introduction

In dynamics simulations, the through-space interactions between particles, which must be calculated every time step,
consume the bulk of computational time. These calculations typically occur in a single, large loop containing many
data dependencies. However, the individual iterations are often independent so fine-grained parallelism should confer a
significant performance gain. Compiler directives tend to break loops into separate UNIX processes with fork/join
operations. These processes are usually linked to physical processors and require a significant amount of overhead to
create and destroy.

Another model of execution is threads. A thread represents an instruction stream executing within a shared address
space that can be used to accomplish a given task.  Execution of multiple threads can yield efficient resource utilization
and require less system overhead to maintain.  One of the most common uses for threads is to overlap computation with
I/O.  In this case, a process creates one thread to perform I/O and another to continue with calculations.  The threads are
then executed concurrently.  For example, when the I/O thread is waiting for the completion of input, the computation
thread executes; when the computation thread waits for a memory fetch, the I/O thread executes.

Threads are sometimes called “lightweight” processes because they share many of the properties and attributes of full
processes. When a processor switches context between two processes, the entire memory space of the executing
process must be saved and the memory space of the process scheduled for execution must be restored. However, since
multiple threads created by the same process share the memory address space of that process, there is no need to save
and restore large portions of memory when switching context between threads. This savings of processor time and
resources is one of the major advantages of programming with threads.

Pthreads is a POSIX standard established to control the spawning, execution and termination of multiple tasks within a
single process (Nichols et al., 1996). Concurrent tasks are assigned to independent threads. Threads within the same
process have access to their own local, private memory but also share the same memory space of the global process.
Executing on shared-memory computers, the system may be able to assign the threads to run across multiple
processors.
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As useful as the Pthreads standard is for parallel programming on shared-memory computers, a Fortran interface is not
defined. However, there are no serious technical barriers to implementing such an API (Application Programming
Interface). We describe the implementation and testing of Fortran 90 bindings for the POSIX threads library under
development at the CEWES MSRC. Section 2 gives a brief overview of the POSIX threads programming model and
the routines contained in the standard.  Next, a description of how the Fortran 90 interface routines are implemented is
given in Section 3. Some preliminary results of using the bindings within an actual particle dynamics code are given in
Section 4. A comparison of these results with other parallelization methods on the same code will also be presented.
Section 5 describes our preliminary investigation into combining MPI and Pthreads. Finally, our conclusions and
directions for future research are presented in Section 6.

2. The POSIX Threads Library

2.1 The Pthreads Programming Model

Threads are used for task or function parallelism. A single process made up of many independent tasks may break up
its computation into a set of concurrently executing threads. Each thread is created and assigned a given subroutine
(parameters may be sent to the subroutine if needed); the subroutine code is executed concurrently with all other active
threads, and the thread is deleted after completion. Each thread is an instruction stream, with its own stack, sharing a
global memory space. Independent loop iterations (encapsulated within a subroutine call) can be executed as threads.
This is the basis for our use of threads within the particle dynamics code.

All threads executing within a process are peers. There is no explicit parent-child relationship. A thread may be halted
until another thread completes its task, but ultimately, all threaded tasks are concurrent. The operating system performs
scheduling. However, Pthreads functions are available to set priorities and alter scheduling.

2.2 Library Details

The library is relatively small, consisting of only 61 routines that can loosely be classified into three categories: thread
manipulation (e.g., creation, termination), synchronization (e.g., locks, barriers), and scheduling (e.g., execution
priority). Each thread is given a unique thread ID upon creation. The Pthreads standard defines attributes in order to
control the execution characteristics of threads. Such attributes include detach stack, stack address, stack size,
scheduling policy and execution priorities.

3. Fortran 90 Bindings

The interface we propose consists of two files. The first is a Fortran 90 module containing some necessary constants
and derived type definitions. The second is a collection of wrapper routines that provide the Fortran bindings to the
Pthreads library. These wrappers are void C functions that call the vendor-supplied Pthreads library.  The wrappers are
called from Fortran 90 programs as if they were external subroutines.

Many software libraries have incorporated both a Fortran and C interface to the same functions regardless of the
language in which the libraries are originally implemented.  We have taken a cue from some of these previous efforts;
for example, Sunderam et al. (1994) and Snir et al. (1997). The C wrapper functions are given the same names as the
corresponding POSIX routines with an “f” prefixed. For example, a C thread obtains its thread ID with the call:

my_id = pthread_self();

whereas a Fortran thread gets its thread ID as follows:

call fpthread_self(myid) .



Also, most C routines return an error code via the function name, thus an additional parameter is added to the end of the
Fortran parameter list in order to return this error code.3

When designing routines written in one language, to be called from code written in another language, matching the
methods utilized for the passing of parameters is an important consideration. Fortran 90 uses pass by reference for all
its parameters while C may use pass by value. This difference requires that all C wrapper functions assume the
parameters sent would be passed by reference; i.e., all dummy parameters are pointers. We were not tempted to mix
Fortran 90 pointers with C pointers, although this may have simplified some of the wrapper routines. Reliance on a
straightforward compatibility between the two languages would be risky and would likely reduce the portability of the
bindings.

Another portability issue is how compiled names are denoted in the object code created by the compiler.  The Fortran
90 compiler on the SGI Origin 2000 appends an underline character to the name of compiled functions. Thus, each of
the C wrapper function names is suffixed with ‘_’. Other systems use all capital letters while others do not perform any
alterations. To handle this difference between compilers, the wrapper source code shall contain C preprocessor
commands that will be able to select the appropriate name for functions.

A further technical difficulty is that the Pthreads library makes extensive use of C structures in its definition of Pthreads
data types. The Pthreads standard defines data types to handle such things as thread attributes, mutex and conditional
variables, and mutex and conditional attributes. To preserve the Pthreads types defined within the bindings, a Fortran
90 derived type is defined with the same naming conventions used to name the wrapper routines; e.g.,
pthread_mutex_t  becomes fpthread_mutex_t . Only the functions within the Pthreads library manipulate the
data in these structures.  The Fortran 90 application program rarely needs to access the data directly. Instead, it must
pass the address of a data type to a library routine. Thus, rather than trying to pass Fortran 90 derived types composed
of the appropriate components into C structures, the derived type contains only a simple integer, which stores an
address. Within the Fortran 90 module, this integer is often declared to be PRIVATE.  This adds an extra level of
security to these derived types by preventing the programmer from inadvertently changing the address of an important
variable.

The wrappers to the POSIX functions interpret this integer as the address of the C structure required. The wrapper code
must, where appropriate, allocate space on the heap for the needed structure, decode the integer parameter to be a
pointer to a structure, modify the contents of the structure and free up the space when the structure is no longer needed.
Thus, only the structure locations are communicated between the Fortran 90 application and the interface. This
improves the portability of the bindings and the application programmer need not worry about any differences between
Fortran 90 and C pointers or derived types and structures.

An example of this information hiding is illustrated in the following two wrapper codes. The first is
fpthread_mutex_init_  which allocates memory to hold the mutex structure (pthread_mutex_t ), initializes
the structure by calling the Pthreads function, and returns the address (as an integer) of the initialized mutex to the
calling Fortran 90 code.

void fpthread_mutex_init_(int *mutex, int *attr, int *ierr)
{

pthread_mutex_t *lmutex;
pthread_mutexattr_t *lattr;

lmutex = (pthread_mutex_t *) malloc( sizeof (pthread_mutex_t));
lattr = (pthread_mutexattr_t *) (*attr);
*ierr = pthread_mutex_init(lmutex, lattr);
*mutex = (int) (lmutex);

}
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The second wrapper is fpthread_mutex_destroy_  which returns the memory allocated to the mutex back to the
system and returns the NULL pointer to the calling Fortran 90 code.

void fpthread_mutex_destroy_(int *mutex, int *ierr)
{

pthread_mutex_t *lmutex;

lmutex = (pthread_mutex_t *) (*mutex);
*ierr = pthread_mutex_destroy(lmutex);
free(lmutex);
*mutex = NULL;

}

The programmer must pay close attention to the scope of variables since the rules for scoping are different in Fortran
and C. This is particularly important when using mutexes and conditional variables.  In order to ensure that only a
single thread is allowed to enter a critical section of the code, a single copy of a lock must be declared in memory and
visible to all threads that make use of it.  Such global variables are easily declared in C.  With Fortran 90, it is
suggested that all mutex locks and conditional variables be declared within a module that is used by each subroutine in
which these synchronization constructs are needed.

4. Preliminary Results

The high-energy impact simulation program, MAGI, is used as a test bed for the Pthreads API. MAGI is a smoothed-
particle dynamics hydrocode. Dynamics algorithms, in general, are difficult to parallelize.  The through-space
interactions between neighboring particles, which must be calculated during every time step, consume the bulk of
computational time.  However, the particle data tend to be unstructured and poorly aligned. To make matters worse, the
nearest-neighbors change as the dynamics trajectory evolves. This makes data distribution and load balancing very
difficult.

In MAGI, the through-space interactions are calculated within a single, large loop that contains numerous data
dependencies and subroutine calls. The program spends most of its time here. Fortunately, each iteration of this loop is
independent of all other iterations. Parallelizing this loop using Parallel Computing Forum (PCF) directives confers a
significant speed-up.  Table 1 shows timing results for a 100,000 particle simulation of a steel block striking an
aluminum plate at high velocity.  The same simulation was performed expressing loop-level parallelism using Pthreads
(Table 2). The pre-processor performance is lower for threads, but the scalability appears better than for PCF directives.
In this experiment, a create/join model is used to thread the particle loop. So, the system overhead associated with
creating the threads is paid at every time step. It is possible that a more efficient thread pool model will improve the
performance of the Pthreads version of MAGI. In a thread pool algorithm, the threads are created at the start of the
simulation and reused.

Table 1. Timings for a MAGI simulation on a 16-CPU SGI Power Challenge (level-3 optimization and PCF directives).

# CPU Time (seconds)
1 862
2 583
4 475
8 425
12 405
16 403



Table 2. Timings for a MAGI simulation on a 16-CPU SGI Power Challenge (level-3 optimization and Pthreads).

# Threads Time (seconds)
1 1299
2 1031
4 725
8 557
16 473
24 402
32 445
48 511

5. Pthreads and MPI

A current trend in the future of HPC architectures is the cluster of symmetric multi-processor (SMP) nodes connected
to each other via a network.  Each SMP node is a shared memory multi-processor that can make use of Pthreads.  In
order to share data between nodes, some explicit message passing must be done.  Thus, a combination of both Pthreads
(local to SMP nodes) and MPI (message passing between nodes) is a potential model of computation for effectively
programming on SMP cluster platforms.

In order to test the efficacy of such a hybrid model, we have developed small test codes that use the Fortran 90 Pthreads
bindings and MPI calls.  Our experiments were carried out on the SGI/Cray T3E at CEWES MSRC.  Each node of the
T3E simulated a SMP cluster running multiple threads while data was shared between nodes via MPI calls.  Each
thread was able to communicate directly with other threads on other processors.  The rank of the processor was used to
address messages toward a pool of threads executing on the processor.  Tag numbers were then used by individual
threads to receive messages that were specifically addressed to that thread.

These experiments were simply a proof-of-concept exercise.  We are unaware of any previous experiments combining
Pthreads and MPI calls, which gives us nothing to compare to or upon which to improve.  Further development and
testing of this model is necessary.

6. Conclusions

Pthreads is a convenient method of expressing task-level parallelism.  The programmer has more control over
scheduling and synchronization with Pthreads than with parallel compiler directives. More important, the programmer
can control the grain size of each thread. If the grain is too coarse, more threads can be created and vice versa. Pthreads
has the advantage of low system overhead because all threads exist in a single UNIX process. In addition, multiple
threads can exist on a single processor, thus giving better resource utilization.

Threading is widely used in systems programming, where C/C++ is the primary language. However, Fortran is the
primary language for high performance computing (HPC). Threading is not as common in HPC applications because
the Posix standard does not define a Fortran interface to the Pthreads library. The Fortran API described here provides
an additional parallel programming tool to the DoD HPC community. In addition, combining Pthreads with MPI
presents an attractive programming model for SMP clusters.
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